Chapter 2

Review of the Literature

Introduction

This chapter examines the methods that the Information Systems (IS) help-desks use to solve software and hardware problems encountered by various workforces using the personal computer as their primary data retrieval tool. This chapter also examines the evolution that has taken place from using only the help-desk technicians and their ability to solve hardware and software problems, to the use of various types of knowledge bases for faster, cheaper, and more efficient problem solving. The methodologies used for these knowledge based systems include the rule-based expert system and case-based knowledge management systems. The literature seems to suggest that the case-based knowledge management system is better suited for the IT help-desk than the rule-based expert system.

The Information Technology (IT) Help Desk

The past two decades have shown exponential advancement in the technology of information systems available to the business and government sectors of countries throughout the world. This technological growth created the need to move away from the vast libraries of three-ring binders on system problems and solutions to a methodology that allows the help desk technician to provide problem solutions in minutes versus hours.

Graham and Hart (2000) in their report of successes and failures of developing a University-wide centralized IT help desk at the University of Pittsburgh, show the value that is added to the help desk by the implementation of a knowledge management system to replace antiquated manual methods. Prior to the implementation of the knowledge-centric system, help desk technicians at the University of Pittsburgh, were expected to review resolved problems in various databases, and be able to resolve future problems based on the information contained in the solution fields of the these databases. The database contained approximately 150,000 trouble calls at any given time making it practically impossible for the technicians to be able to review and retain this knowledge to solve future problems.

Graham and Hart (2000) continue that the university developed a knowledge-centric help desk system by combining two off-the-shelf software packages. The first was a ticket processing package for logging and storing the actual trouble ticket. The second package provided a framework for the creation of a knowledge base organizing it into logical categories using a decision tree format.

Graham and Hart (2000) conclude by stating the benefits derived by the university due to the implementation of the knowledge-centric system. “The benefits include:

1. Improved consistency and accuracy of responses to Help Desk calls.

2. Improved quality of support by reducing the amount of time required to research problems.

3. Reduced average call length.

4. Delivery of tools for end-users to search the knowledge base and resolve problems independently.

5. Reduced training costs for new Help Desk Analysts.”

Last (2003) discusses the merits of building your own help desk software as opposed to purchasing an off-the-shelf version. Last’s conclusion is that with the growth of information technology and the demands already placed on various in-house programming staffs that the best way is to purchase an available software package for use on the help desk.

Halverson, Erickson, and Ackerman (2004) examine the concept used at a large corporation which employed the concept of using the Question and Answer (Q&A) paradigm where they store the question (problem) and the answer (solution) in a Q&A knowledge-base. The implementation of this Q&A system allowed both in-house and on-line customers access to query the knowledge-base.

The increase in service calls from 4,076 in 2000 to 22,126 in 2005 at the University of Rochester prompted them to design a help desk system which would allow them to handle the increase in calls. The designers at the University of Rochester developed a help desk system, called System Reference (SysRef), using several off-the-shelf search engines and help desk packages. The designers used Intuit Corporations “Track-it” for logging trouble calls. Coveo Search, which is similar to searching on Google or Yahoo, is utilized as their primary search engine. They then stored the data using Microsoft SQLServer 2000 as the database system to store all of the help desk data. The University of Rochester states that because the SysRef database has substantially addressed the immediate needs of their changing IT environment that they are “…looking forward to a period of infrastructure strengthening which will then poise the application for future growth while retaining the original concepts of using existing data whenever possible and not ‘re-inventing the wheel’” (Padeletti, Coltrane, and Kline, 2005).

The research indicates that the IT help desk is moving rapidly from the massive numbers of three-ring binders to some type of knowledge-based system. This movement confirms in part the thesis of this exploratory study that a knowledge-base is becoming a critical part of the IT help desk. An important question that remains to be investigated is the relative merits of CBR and RBR for this task.

Expert Systems Defined

Jackson (1999) states that expert systems are computer programs that are derived from Artificial Intelligence (AI). The goal of AI is to understand intelligence by building computer programs, or shells, that exhibit intelligent behavior. AI is further concerned with the concepts and methods of symbolic inference, or reasoning, and how that knowledge will be used to make those inferences will be represented inside the machine.

Jackson (1999) further states that an expert system can completely fulfill the knowledge gap within a domain or it may act as an assistant to aid a domain expert in solving complex problems. Typically, expert systems are utilized in a diverse range of knowledge domains, such as internal medicine, organic chemistry, and business applications such as the IT help desk. Expert system tasks include data interpretation, diagnostics such as machine failure, analysis of complex chemical compounds, computer systems configuration, and for use in robotics.

Conventional computer programs can be written to supply some of the requisite domain knowledge required by an individual. However, there are major differences in the way expert systems can be distinguished from these conventional application programs.

First, the expert system “simulates human reasoning” about a given problem domain but does not simulate the domain itself. Second, the expert system performs “reasoning over representations” of human knowledge while maintaining the ability to do numerical calculations and/or data retrieval. Third, conventional programs solve problems using strict algorithmic methodology while the expert system uses “heuristic or approximate methods” that do not guarantee that the answer will be absolutely correct and will succeed. These “heuristic or approximate methods” are better known as rules of thumb (Jackson, 1999).

Jackson (1999) continues that there is a difference between other types of artificial intelligence programs and the expert system. First, the expert system deals with problems that require a great deal of human expertise. Other AI programs deal mainly with abstract mathematical problems and are, for the most part, considered research vehicles. Secondly, the expert system, because it is attempting to solve problems dealing with human expertise, must exhibit a high degree of performance in terms of speed and reliability in order to maintain its usefulness. This is because these problems dealing with human expertise, for example solving problems related to computer performance, require solutions in a short time frame due of the volume of problems encountered in any one day. The AI programs are just that, programs, being used as research vehicles. Finally, Jackson suggests that an expert system must be “capable of explaining and justifying solutions or recommendations” to give the user confidence that the answer retrieved from the expert system is, in fact, correct.

Englemore and Feigenbaum (1993) state that AI is concerned with the concepts and methods of symbolic inference, or reasoning, by a computer, and how this knowledge will be used to represent these inferences within the computer system itself. Englemore and Feigenbaum continue that every expert system consists of two principal parts: the knowledge base; and the reasoning, or inference engine.

Luger and Stubblefield (2002) state that the knowledge base of an expert system contains both factual and heuristic knowledge. Factual knowledge is that knowledge of the task domain that is widely shared and, usually found in books and journals. Further, this factual knowledge is commonly agreed upon by experts in a particular domain.

Heuristic knowledge is the less rigorous, more experiential, more judgmental knowledge of performance. It is the knowledge that humans possess that underlies our ability to formulate “good guesses”. The formalization and organization of the knowledge is known as knowledge representation.

The exploratory study in this dissertation deals with two of the most important paradigms utilized in expert systems. These paradigms are rule and case-based reasoning.
Current Uses and Advances in Expert Systems and Knowledge Acquisition using Rule-based Reasoning (RBR)
Rule-based knowledge representation is one of the most widely used types (Englemore and Feigenbaum, 1993). But what exactly is Rule-based Reasoning? Crossman et al. (1995) state by breaking this down into its individual parts, rules are knowledge representations about which “patterns of information experts use to make decisions and what are the decisions that follow.” Rule-based reasoning offers a set of rules that chain to a given conclusion. The most popular way to represent this knowledge is by using the “if-then” rule. Crossman et al. state that this rule can be represented in the logical relation “p→q”. In this relation, “p” represents a condition or set of conditions and “q” represents a conclusion or set of conclusions. This relation/conclusion set is, according to Ignizio (1991), the most common set utilized by expert systems, and especially in rule-based expert systems. This inference strategy is better known as “modus ponens” which means that if A infers B and A is true, then B is true.

Crossman et al. (1995) further state that many different algorithms have been developed to support the basic premise of rule-based reasoning. There are varying differences in these approaches and are all in the domain of knowledge engineering. One example given by Crossman et al. is that “forward chaining rules facilitate programming synthesis, while backward chaining rules are more suited for analysis or search.”

If the type of reasoning involved in the domain of interest involves the use of flow diagrams or trees, then the use of rules is the best way to proceed. These rules do not, however; represent the facts or data themselves; rather they represent the reasoning about the facts or data. Rule-based systems use an inference engine which is an algorithm that governs what the rules can do, when they will be activated or triggered, and what priority is given to each for execution. Rules in the rule-based system can also entertain certain forms of uncertain reasoning, e.g., the adding or subtracting of confidence levels while evaluating a hypothesis or providing an alternative mechanism to handle other lines of reasoning (Crossman et al., 1995).

Rule-based and other expert systems tools are more commonly known as shells. The biggest advantage that rule-based systems offer is they allow the user to look at the rules in a near-natural language format and provide an explanation as to why an explanation was made.

Luger and Stubblefield (2002) state that the first attempt at building an expert system using the rule-based paradigm, is unlikely to be very successful. The primary reason for this is because the domain expert finds it very difficult to express tacit knowledge in terms that can be used to solve the specific problem.

Finally, Luger and Stubblefield (2002) conclude that the most widely used knowledge representation scheme for expert systems is rule-based. Normally, the rules themselves will not hold certain conclusions but there will be some degree of certainty that the conclusion will hold if the conditions hold. There are statistical techniques which are used to determine these certainties. Rule-based systems, whether or not they possess certainties, are usually easily modifiable. These certainties make it relatively simple to provide helpful traces of the system’s reasoning. These traces can be used in providing explanations of what it is doing.

It is noteworthy to mention that rule-based reasoning is used in the help desk environment primarily as an enhancement to case-based technology (Luger and Stubblefield, 2002).
Current Uses and Advances in Expert Systems and Knowledge Acquisition using Case-based Reasoning (CBR)
Case-based reasoning (CBR) is an Artificial Intelligence (AI) paradigm for problem solving and knowledge reuse that uses previous similar examples to solve the current problem. Further, CBR draws its ability to search its memory for solutions and acquire new ones without necessarily understanding the underlying principles of its domain (Kolodner, 1993).

In order, however, to explain how CBR works, one must first understand the meaning of case. Watson (2002, p. 27) defines case as:

Cases are records of experiences that contain knowledge, which can be both explicit and tacit. For example, they can be cases in the legal sense; they can be case histories of patients in the medical sense, details of bank loans, or descriptions of equipment troubleshooting situations.
Watson continues by describing what comprises a legal case, a medical case history, a bank loan and the troubleshooting record. First, he states the description is made up of “the legal problem, the patient’s symptoms, the details of the loan, and the equipment’s problem”. He concludes by stating that the outcome or solution of each of these descriptions is comprised of “the verdict or ruling, the treatment, the outcome of the loan, and the technical fix”.

Kolodner (1993) states that a case can further be described as an account of an event, a story, or some record that typically comprises the problem that describes the state of the world when the case occurred and the solution that states the derived solution to that problem. This means that CBR derives solutions from previous cases only and acquires new cases to improve and evolve its decision-making abilities.

Further, the representation of a case has various forms, such as an example or even a story, as long as it can be recognized by a reasoner in a specific domain. Semantically, a case represents both a specific piece of knowledge and its context, under which the case will be retrieved to construct a solution for a new problem. This means that we can view case-based reasoning as a process of remembering a set of previous cases and making decisions based on the comparison between them and new situations.

Kolodner (1993) continues by discussing the advantages and disadvantages of using CBR in knowledge development. Kolodner asserts that CBR allows the reasoner to propose solutions to problems quickly, avoiding the time necessary to derive those answers from scratch. As an example, a doctor remembering an old diagnosis or treatment experiences this benefit. The case-based reasoner, as with any other reasoner, has to evaluate proposed solutions; getting a head start on solving problems because it can generate proposals easily. This was certainly brought to light during an evaluation of a CBR application called CASEY (Kolodner’s first CBR application), which showed a speedup of two orders of magnitude when a problem had been seen in the past.

CBR allows a reasoner to propose solutions in domains that are not completely understood by the reasoner. Many domains are impossible to understand completely, often because much depends on unpredictable human behavior. CBR allows assumptions and predictions to be made based on what worked in the past without having a complete understanding of the problem or issue.

CBR gives a reasoner a means of evaluating solutions when no algorithmic method is available for evaluation. Using cases, in this instance, is particularly helpful when there are many unknowns, making any other type of evaluation impossible or at least difficult. Solutions are evaluated in the context of previous similar situations. Again, the reasoner does its evaluation based on what worked in the past (Kolodner, 1993).

The CBR problem solving methodology equates with the manner in which humans solve problems where there is a situation when an individual encounters a new situation or problem, that person will often refer to a past experience of a similar problem (Pal and Shiu, 2004). Pal and Shiu continue that the concept of CBR is very appealing due to the fact that it is very similar to the human problem solving behavior and as such will relieve the task of in-depth analysis of the problem domain where history is available. Finally, Pal and Shiu conclude that the use of this method leads to the advantage that CBR can be based on “shallow knowledge” and does not require the knowledge engineering effort required by rule-based systems.

Bergmann et al. (2003, p. 16) state that “Compared to expert systems, case-based decision support systems do not rely on rules that are supplied by a specialist”. Bergmann et al. believe that CBR is more of a “natural approach” whereby the help-desk technician (or other specialist) never has to supply diagnostic rules or to define formal specifications of any of the decision processes utilized to determine a solution to a problem. The CBR decision support system has the ability to acquire and maintain knowledge inasmuch as the system has the ability to learn new cases.

Pal and Shiu (2004) state that the process of CBR can be abstracted as a cycle which consists of four basic steps (Figure 1, The CBR Cycle): (1) Case Retrieval to find the most similar case that will address the new problem, (2) Case Reuse to utilize the retrieved case to solve the problem, (3) Case Revision or adapting to modify the retrieved case with the hope that it will fit the new problem, and (4) Case Retention to maintain the revised case as a new case in the case-base after it has been confirmed or validated. Other research has concluded that the four basic steps in the CBR cycle should actually be a six step process by adding the Restore and Review phases.
[image: image1.png]Leamea
4

Ganral
Knonlesige

RETAIN:

kS
\,MW Sotved
Al g
Confirmec Suggestea

Sofution Salution

Figure 3. The CBR Cycle
Note: From Foundational issues, methodological variations, and system approaches, Aamodt and Plaza, 1994, Artificial Intelligence Communications, 7:1, p. 8. Copyright IOS Press. Reprinted with permission.
Göker and Roth-Berghofer (1999) believe that the steps in the CBR cycle are contained within two general cycles; the Application Cycle and the Maintenance Cycle. The Application Cycle, which contains the Retrieve, Reuse, and Revise steps, is performed whenever a user or the help-desk technician solves a problem with the case-based help-desk support system. If the solution that is generated during the Reuse cycle is not correct and it cannot be repaired, the help-desk technician must generate a new solution. This new solution is put into play during the ReCyle phase. All of the new solutions generated in this manner are stored in a buffer and made available to the help-desk technicians as unconfirmed cases. These unconfirmed cases are then sent to the Maintenance Cycle to be processed and included in the case-base. The Maintenance Cycle, which contains the Retain and Refine steps is executed less frequently. Normally, the maintenance phase is conducted at specific intervals to update the case-base with the unconfirmed case(s) contained in the ReCycle phase buffer. There are two additional steps that Göker and Roth-Berghofer have added to the generally accepted four-phase CBR cycle. These are the ReCycle and Refine steps. The ReCycle step is used as an intersection between the Application and Maintenance Cycles and contains the unconfirmed cases sent by the Application Cycle. The unconfirmed cases retrieved from the ReCycle buffer are placed in the Refine step where they are repaired and written to the case-base. The primary mission of the Refine step is to ensure that the case-base is accurate. There are five checks that Göker and Roth-Berghofer (1999, p. 144) state that must take place before the case can be added to the case-base. These are:

“1. Whether it is a viable alternative that does not yet exist in the case base,

 2. Whether it subsumes or can be subsumed by an existing case,

 3. Whether it can be combined with another case to form a new one,

 4. Whether the new case would cause an inconsistency, and

 5. Whether there is a newer case already available in the case base.”

Roth-Berghofer and Iglezakis (2001) also believe that the six-step CBR cycle is the correct method and that the two phases, Maintenance and Application, best describe the correct CBR process of retrieving solutions and insuring that they are accurate and then storing them in the case-base. Figure 4 shows how the Maintenance and Application phases interact.
[image: image2.png]- Maitenanca Phasa - - Applcation Phass .
knowledge’, / problem

| o Retiave i
<

/N

Figure 4. The six RE cycle
Note: From Six Steps in Case-Based Reasoning: Towards a maintenance methodology for case-based reasoning systems, Roth-Berghofer and Iglezakis, 2001, Proceedings of the 9th German Workshop on Case-Based Reasoning (GWCBR). Copyright Shaker Verlag. Reprinted with permission.
[image: image3.png]malntenancs steps

retain roviow, restore.
oxiact index integrate measure monitor seloct

. soloct

mesirs ore it Syuc s |

with domain w/o domain i
suggest select adjust
knowledge _knowledge oy ool auai

Figure 5. Decomposition of Maintenance
Note: From Six Steps in Case-Based Reasoning: Towards a maintenance methodology for case-based reasoning systems, Roth-Berghofer and Iglezakis, 2001, Proceedings of the 9th German Workshop on Case-Based Reasoning (GWCBR). Copyright Shaker Verlag. Reprinted with permission.
Roth-Berghofer and Iglezakis (2001) also give a detailed decomposition of the tasks and methods that are utilized in the Maintenance Phase (Figure 5). The Retain step of the maintenance phase is used to add the adapted case to the case-base. Prior to adding these adapted cases to the case-base, they should be marked as unconfirmed (Göker and Roth-Berghofer, 1999). The technician will then have a choice between confirmed and unconfirmed cases giving the technician a chance to evaluate the unconfirmed cases to determine whether or not they should be entered into the case-base. The retain step is further utilized to allow the modification of the similarity measures by realigning the index structure.

The Review step contains steps required to measure and monitor tasks. Figure 5 shows the maintenance phase with three subservient levels. The solid lines show the subtasks and the dotted lines show the alternative methods.

Further, Roth-Berghofer and Iglezakis (2001) state that it is necessary to evaluate the current state of the knowledge containers to determine the quality of the resident cases. Roth-Berghofer and Iglezakis identified syntactical (no reliance on domain knowledge) measures such as correctness, consistency, uniqueness, minimality and incoherence to determine this quality. The Monitoring phase looks at statistics such as case-base growth and duplication of solutions.

The Restore step is described by the second level tasks select and modify. These sub-steps select the appropriate modify operators and utilizes them to change the cases in the case-base.

Watson (2002, p. 16) also submits that there are six versus four steps in the CBR cycle. Watson identifies these “six-REs” of the CBR cycle as:
“1. Retrieve knowledge that matches the knowledge requirement.

 2. Reuse a selection of the knowledge retrieved.

 3. Revise or adapt that knowledge in light of its use if necessary.

 4. Review the new knowledge to see if it is worth retaining.

 5. Retain the new knowledge if indicated by step 4.

 6. Refine the knowledge in the knowledge memory as necessary.”

Figure 6 shows how the six steps of the CBR cycle can be mapped to the activities required by a KM cycle.
[image: image4.png][h

7
h
/]

/[Retrieved
/]
Retrieve 1| wmowedse
—— 1/
Knowledge
requirement
o |E
< @z
Memory | (&)
S~ — -
~7— Refine e
2 Fean | selected
[knowledge
Revise
] =
Review | | ®

Potential new
knowledge

New knowledge

Figure 6. The CBR Cycle
Note: From Applying Knowledge Management: Techniques for Enterprise Systems, Watson, I., 2002, p. 17, Copyright Elsevier Science & Technology Books, December 2002. Reprinted with permission.
Watson’s (2002, p. 17) description of the activities that take place during the CBR cycle for the most part, parallel the activities stated by Göker and Roth-Berghofer (1999), albeit semantics. Watson describes the activities which take place during the CBR cycle outlined in Figure 4. Watson states:

“1. The processes of retrieval, reuse, and revision support the acquisition of

 knowledge.

 2. The processes of review and refinement support the analysis of knowledge.

 3. The memory itself (along with retrieval and refinement) supports the

 preservation of knowledge.

 4. Finally, retrieval, reuse, and revision support the use of knowledge.”

Brief discussions of the four major elements that define case-based reasoning (case representation, case indexing, case retrieval, and case adaptation) follow.

Case Representation

According to Main, Dillon, and Shiu (2001) it makes no difference what a case actually represents, however, the features, or composition of each case, has requirements that need to be represented in some format. One of the most significant advantages that case-based reasoning has is its flexibility in this regard. Depending on the types of features that have to be represented, an appropriate implementation platform can be chosen. These implementation platforms range from simple Boolean, numeric and textual data to binary files, time dependent data, and relationships between data. CBR can be made to reason with all of them.

In addition to case representation, Pal and Shiu (2004) state that regardless of the format chosen to represent cases, the structure of the cases themselves must be set up in such a way that it will facilitate the retrieval of the appropriate case when the case base is queried. Pal and Shiu continue that there are a number of ways the memory model for a particular form of case representation will depend. Accordingly, Pal and Shiu list six factors pertaining to the memory model. These memory model factors are 1) how the case representation is actually defined within the case-base, 2) What is the CBR system being used for?, 3) How many cases can conceivably be stored in the case base, 4) When the case-base is being searched, how many of the case features are being utilized during case matching, 5) Is it possible, because of case similarity, to group sets of cases into natural groupings? 6) In terms of the domain knowledge, how easy or difficult is it to determine case similarity?

In any event, cases are assumed to have two components, problem specifications and solutions and the representation used may be anything from a simple flat data structure to a complex object hierarchy.

As it applies to these structures, Main, Dillon, and Shiu (2001, p. 9) adds that there are two primary structures that can be applied case bases; one is a flat case base where indices are chosen to represent important parts of the case base and during the retrieval process utilizes the comparison of current case features and the features of each case in the case base. The second structure is a hierarchical structure where cases are stored in groups (much like the help desk scenario where the cases are stored by problem area) which reduce the number of cases that must be accessed during each search.
Watson (2002, p. 27) believes that there are two distinctive types of case-bases, homogenous and heterogeneous. Watson describes these as:

In homogenous case bases all cases share the same data or record structure; that is, cases have the same attributes but varying values. In heterogeneous case bases, cases have varied record structures; that is, cases may have different attributes and varying values.
Case Indexing

According to Pal and Shiu (2004) case indexing refers to the methodology for assigning an index to a case which will enable the future retrieval and comparison of selected cases. Selecting the correct index is very important inasmuch as it guides the pointer to select the right case at the right time. This is important because the index assigned to a case will determine the context in which it will be retrieved in the future. Pal and Shiu offer several suggestions for choosing indices. First, the indexes should be tied to the important features of a case, for example, in the help-desk case-base category is a feature that would need to be indexed. This means that if the category of “main board” came up the system would go directly to that category and search for solutions. Secondly, the abstraction level of the indices should be such that cases would only be retrieved from the indexed category. If the abstraction level was too abstract, cases could be retrieved in circumstances outside their domain. This would, of course, cause an inordinate amount of processing time thereby slowing case retrieval time.
CBR Retrieval Methods

Pal and Shiu (2004, p. 15) state that: “Case retrieval is the process of finding, within the case base, those cases that are the closest to the current case.” The question arises during case-base development as to how cases are to be retrieved. The developer must design a case retrieval method that will determine if a case is appropriate for retrieval and, further, how the case-base is to be searched. Selection criteria are necessary to decide which case is the closest match to the request and therefore the “best” one to retrieve.

Case retrieval depends on the actual processes involved in retrieving a case from the case-base along with the memory model and indexing procedures used. The retrieval methods used by case-base developers in their designs depend on the size and content of the case-base. These methods range from the use of the nearest neighbor algorithm up to and including the use of intelligent agents. Pal and Shiu (2004) state that the nearest neighbor, inductive, knowledge-guided, and validated retrieval approaches are the most common, traditional methods used in case retrieval.

Pal and Shiu (2004) continue that before a retrieval method is selected several factors need to be taken into account. These factors include first, how many cases are to be searched, second, how much domain knowledge is available, third, how hard is it to determine the weightings of the individual features of the cases, and fourth, should all of the cases be indexed by the same features or do each of the cases have features that may vary in importance even though they are part of the same category.
After case retrieval has been accomplished, a determination normally needs to be made as to whether or not the retrieved case closely emulates the problem case or should the various search parameters be modified and the search conducted again. Adaptation or changing the search criteria can offer a considerable time savings for retrieval as opposed to searching the case-base again without modifying the search criteria. To make this determination for the correct analysis method, Pal and Shiu (2004) believe that the following points should be considered: 1) how much time and resources are required for adaptation, 2) the number of cases in the case-base, or how likely is it that there is a closer case, 3) the time and resources that are required for each search, and, 4) how much of the case-base has already been searched in previous passes.
Case Adaptation Methodology

Pal and Shiu (2004) state that translating a retrieved solution into a solution that solves the current problem is called case adaptation. This is the most important step in the CBR process due to the fact that it adds a degree of intelligence to simple pattern matching. Pal and Shiu further believe that there are a number of approaches that can be taken to carry out case adaptation. First, the solution returned by the system can be used to solve the problem without any modification or if the solution is not usable in its present format simple modifications can be employed to make it exact. In the second approach, the first process could be rerun with or without modification when the steps in the first solution were not fully satisfactory in the current approach. The third approach states that a solution could be derived from multiple solutions being returned or several alternative cases could be presented one of which could be the exact solution.
Adaptation can and usually does use various techniques, which include the use of rules, or the application of further case-based reasoning based on the more detailed aspects of the case. Pal and Shiu (2004) suggest that when deciding on which strategy to use for case adaptation it is helpful to consider that as an average of all queries and retrievals how close will the case solution be to the problem presented? In general, will there be differences in the characteristics of the cases and if so, how many? Finally, are there known rules that can be applied to the query to have it return the correct solution?
As an after adaptation task, the developer should check to ensure that the adapted solution allows for the differences between the current problem and the retrieved case. That is to say that the adaptation has addressed the differences between the adapted solution and the current problem. At this point the developed solution should be ready for testing and/or use in the applicable domain.
Maintenance

Roth-Berghofer (2003) describes the maintenance phase in a CBR system in the same terms as any other software system (See Figure 7). The control loop, consisting of the defect/repair cycle, is essential in the maintenance of any system. Inasmuch as knowledge-based systems are software systems, they have no parts to wear out, rather, environment changes, e.g. software upgrades, and patches, etc. are of primary concern when a failure is encountered thus creating a faulty system.
[image: image5.png]repair

Y

Ideal
system

Faulty
system

defect

Figure 7. The control loop of system maintenance
Note: From Developing maintainable Case-Based Reasoning Systems: Applying SIAM to empolis orenge, Roth-Berghofer, T., p. 2, Reprinted with permission.
Roth-Berghofer (2003) continues that some methodology must be in place that facilitates discovery of changes to the case-base. The changes that take place in the case-base that can create problems must be the first to be corrected or adjusted. When these changes are noticed, the technician can then bring the system back to the desired functional state.

Roth-Berghofer (2003) shows, in Figure 8, one of the possible “sequences of CBR system states, where defects and repairs are following each other.” The methodology is based on having a certain level of system performance and when the system drops below that level of performance, repairs are made until the system is back to the desired level of performance. The importance of case-based maintenance was recognized when researchers and developers discovered that case retention and the encoding methodology of these cases were just a part of case-based development (Lopez de Mantaras et al. 2005).
[image: image6.png]n

defect(s)

defect(s)
|

repair

u

Figure 8. The changing quality level (+/-) of a system over time
Note: From Developing maintainable Case-Based Reasoning Systems: Applying SIAM to empolis orenge, Roth-Berghofer, T., p. 2, Reprinted with permission.
Lopez de Mantaras et al. (2005) continue that during the development cycle of the case-base, understanding the issues that could lead to maintenance problems should be brought to light to ensure that maintenance problems during the production mode of the case-base will be kept at a minimum. The issues that should be focused on are the categorization of the case-base maintenance policies, how these policies decide when to activate a maintenance operation, the types of available maintenance operations and how each of these maintenance operations are activated.
The case-base maintenance policies do not necessarily focus on just the case-base, they can look at the case indices, the individual cases, and the methodology by which cases are adapted. Lopez de Mantaras et al. (2005), believe that the purpose of adding the review and restore phase to the CBR process was to enhance the development of the maintenance cycle of the case-base.

Lopez de Mantaras et al. (2005) have modified the Roth-Berghofer and Iglezakis version of the six-stage CBR Model (Figure 4) with a centralized Knowledge Container shared by the Maintenance and Application phases of case-based development and maintenance (Figure 9).
[image: image7.png]ntialize

|

"Mairtenancs U Applicaton

Knoviledge
Coniziner

Figure 9. An extension of the classical four-state CBR model to emphasize the importance of maintenance
Note: From, Retrieval, reuse, revision, and retention in case-based reasoning, Lopez de Mantaras et al., 2005, Knowledge Engineering Review, Vol. 00:0, 1 – 2, 2005. Copyright Cambridge University Press. Reprinted with permission.
Summary

The use of a knowledge management-centric system in an Information Technology Help-Desk environment can solve such problems as key personnel leaving the organization, new or additional systems getting installed, or loss of other solution based media (Gonzalez, Giachetti, and Ramirez, 2005).

Watson (2002) states that “CBR is ideally suited to the creation of knowledge management systems.” Watson believes that the activities in the CBR cycle have a close match with those process requirement activities in the knowledge management cycle.

The literature confirms, in part, first, that case-based reasoning utilized as the solution engine in a knowledge management system for an information technology help-desk, because of the diversity of equipment, solves many of the more difficult problems encountered by technicians, and finally, that the rule-based system lends itself more towards system specificity. For example, a single equipment type, e.g. HP Laser Jet Printers, Model 2100, is primarily what rule-based systems are being used for.

